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Abstract. We present a particularly simple model of deterministic classical motion in a 
two-dimensional random environment. As the parameters of the model are varied, a 
transition occurs from all trajectories being localised to some being extended. We construct 
a mean-field theory for this transition, and relate the model exactly to percolation models 
in particular parameter ranges. We point out that it is a member of a new class of site 
percolation analogues of directed bond percolation. 

Recently, there has been a lot of interest in random walks in a random environment 
(RWRE) (e.g., Sinai 1982, Gates and Westcott 1982, Fisher 1984, Fisher et a1 1985). In 
this letter we discuss a particularly simple model of deterministic classical dynamics 
in a random environment, which we relate to a generalised form of percolation. The 
model shows a transition from all trajectories being localised to some being extended, 
as parameters are varied. The model is defined on a 2~ lattice, with the velocity of 
the ‘particle’ being allowed to change direction, but not magnitude, the change being 
determined by a quenched random rotation matrix on each lattice site. As might be 
expected, the physical origin of this discrete model was a charged particle moving in 
a random magnetic field, which may have astrophysical applications (e.g., short time 
dynamics of particles in a turbulent magnetised plasma). Of the RWRE models, the 
closest relative is Gates and Westcott (1982). In this letter, we restrict ourselves to 
establishing some exact results and constructing a mean-field theory of the transition. 

The model consists of an underlying lattice with ‘instructions’ defined at each site; 
trajectories are defined by following the instructions. To be more precise: a particular 
realisation of the model is a square lattice of sites, with a two-dimensional rotation 
matrix, R(n), associated with each site, n. The magnitude, 6, of the rotations may be 
0, * ~ / 2  or T, sites with these values being called forwards, left, right (or generically 
turning) and backwards sites respectively. In figure 1, which shows a typical realisation, 
the symbols on the sites indicate the magnitudes in an obvious manner. The magnitudes 
are picked at random, with no correlation between different sites. A particular realisa- 
tion (or configuration) may be characterised by the set of probabilities ( P ( 6 ) )  that a 
randomly picked site will have magnitude 8. This set of parameters contains the 
important information. 

A trajectory is denoted by the set { r (  L ) } ,  where r (  L )  is the position of the ‘particle’ 
or the front of the trajectory at time step L. Alternatively, we may use the set of steps 
{ I (  L ) }  defined by 

r (  L )  = r (  L - 1 ) + I (  L ) .  (1) 
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Figure 1. A realisation of the model. ( a )  A typical trajectory is indicated. ( b )  A trajectory 
to illustrate the ‘sausage’ percolation idea is illustrated on the right. 

The steps are generated by 

f ( L +  1) = R ( r ( L ) )  I(L) .  

Thus, the rotation matrix on a site rotates incoming directions into outgoing ones. 
Note that this is a one to one relationship, so the trajectory cannot branch, merge or 
end. It is also important to note that the R(n) do not depend on the time step-they 
are quenched. A consequence of these two points is that all trajectories must either 
be infinite or cyclic, and moreover, that any trajectory which is contained in a finite 
area of the lattice must be cyclic. 

In practice, we may initiate a trajectory by picking a site and direction and working 
forwards and backwards using (1) and (2). In general the trajectory (constructed as 
above) will not visit every site from all four directions (it is not space filling, in a 
general sense), so any realisation of the model will have many distinct trajectories 
associated with it. These trajectories will not overlap (in the sense of steps being 
parallel and between the same two sites). This is again because they cannot merge or 
branch. 

It is natural to compare the trajectories with random walks. The most closely 
related type is the true self-avoiding walk (TSAW) of Amit er a1 (1983). In our case, 
we can regard the rotations at each step as independent random variables until a site 
is visited twice, when the rotation is uniquely determined. This is similar to the bias 
in picking the next step in the TSAW when on a neighbour of a previously visited site. 
The difference is in the peculiarity of the nature of the unique determination. This 
will be discussed more formally elsewhere. 

Having defined the model, the interesting question is: does the nature of the 
trajectories vary as realisations are picked with differing {P( e)}? By considering 
extreme cases of all forwards sites ( P ( 0 )  = 1) and all backwards sites (P( T )  = 1) we 
see that it must: for P(0)  = 1 all trajectories are straight lines which extend across the 
whole lattice, whereas for P( n) = 1 each trajectory is localised on two sites, being 
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reflected between them. As P ( v )  is decreased away from unity one might expect a 
transition to occur, when extended trajectories appear, with an associated phase 
diagram in the three-dimensional space of the {P(O)}  ( 3 ~  as the P(8) must add to 
unity). Some interesting quantities to investigate are: the probability of a site having 
an infinite trajectory passing through it (reminiscent of the probability of belonging 
to the infinite cluster in percolation); the index y in ( r ’ ( L ) ) -  Ly for extended 
trajectories where ( ) indicates an average over initial sites on a given configuration; 
the distribution of localisation lengths for localised trajectories defined (for a particular 
trajectory) by 

for fixed { P( e)} ,  and how the average localisation length diverges as {P( e)} approaches 
a delocalisation transition. 

We will now consider some regions of the ‘phase diagram’ where, by exact or 
approximate mapping onto percolation problems, we bound or estimate the domains 
in which extended trajectories exist, constructing a mean-field theory of the transition. 

A connection with percolation is obvious at an intuitive level-extended trajectories 
percolate across the sample-however, the exact connection is more subtle and depends 
on the region being studied, as will be shown. Firstly, we introduce a new variable, 
A = P( ~ / 2 )  - P(-.rr/2),  and use P(O), P(T) and A as the variables to label the axes 
of the phase diagram-see figure 2(a). The allowed region is inside the tetrahedron. 
For A = O  (i.e. no left or right bias), it reduces to the triangle in figure 2 ( b ) .  Initially 
we consider this restricted region. 

Unless a connected cluster of non-backwards sites (i.e. 8 # T )  exists across the 
sample, no extended trajectory can exist. This is because a backwards site merely 
reflects a trajectory back onto the site from whence it came, thus being unable to 
connect two sites. Thus the critical probability for site percolation, Pc=0.6,  yields a 
bound that extended trajectories cannot exist for (1 - P( v ) )  C P,. This bound is shown 
by the vertical line in figure 2 ( b ) .  We can also get an exact answer for the diagonal 
boundary line in figure 2 ( b ) ,  P(O)+ P(T) = 1. Here the trajectories are ‘sausages’ 
confined between backwards sites. The average length of the sausages is P(n)- ’ ,  
showing an expected divergence as P(0)  tends to unity. The model is equivalent to 
one-dimensional site percolation, with the backwards sites being analogous to the 
unoccupied sites. 

We may use this picture, with the addition of tuming sites, as the basis for an 
approximate analysis of the whole of the parameter space. This treatment constitutes 
a mean-field theory of the transition to extended trajectories. On the right-hand side 
of figure 1, we see that the addition of tuming sites connects intersecting sausages to 
form clusters. This naturally implies a percolation approach to estimating when an 
extended trajectory will appear. Consider a backwards site and move along a sausage 
away from it; what is the probability, U, of not percolating? The first contribution is 
from the smallest non-percolating sausage, where the next site is a backwards one; 
this obviously has weight P( T ) .  The next shortest has an intermediate site which may 
be straight on, or a turning site, leading to a non-percolating sausage section (each 
with probability v) to each side. These have weights P(0)  and a’P( T) respectively, 
where P( T) = P ( r / 2 ) +  P ( - T / ~ ) .  We may continue to build up the non-percolating 
sausage, site by site, leading to a geometric series which self-consistently defines U. 
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Figure 2. ( a )  T h e  general parameter space. ( b )  For A = 0, with bound on region of extended 
trajectories (vertical line) and estimate of transition line (diagonal line). Any extended 
trajectories are expected to be outside the union of the two shaded regions. 

After a little rearrangement we find 

a result also obtained by Chalker (1985) in the equivalent problem of solving the model 
on a four-fold coordinated Cayley tree. If we define U = 1 - p ,  then for small p we 
may determine the growth in percolating probability, that is 

Therefore, P( r ) / P (  T )  = 2 or 3P( 7 ~ )  + 2P(O) = 2 is the boundary of extended trajec- 
tories, and is shown in figure 2(b) .  

The above treatment constitutes a ‘mean-field theory’ for the transition, the approxi- 
mation being the neglect of loops in the sausage percolation cluster: if there are no 
loops, then there is only one trajectory per sausage cluster, visiting all sites. Thus we 
may identify sausage and trajectory percolation. With loops, this is not generally 
true. The approximate treatment should be best near P(O)= 1, where loops are 
improbable, and worst when P ( r )  tends to unity, as we will see later. Another point 
to stress is that a conventional mean-field theory-where only the single sites were 
considered (rather than using the sausages as building blocks)-would neglect the 
strong correlations of the sausage structure, particularly near P ( 0 )  = 1. 

We next examine the effect of left-right bias, by considering the line P ( 7 r / 2 ) +  
P(-.rr/2) = 1. Consider a cluster of lefts surrounded by rights. It is easy to see that 
inside the cluster, the trajectories will be cyclic on groups of four squares, and that 
there will be two longer trajectories running around the boundary. The readers may 
convince themselves that this is the general structure by drawing a few pictures. Since 
the longer trajectories will mainly exist on the outside of clusters of lefts or rights, one 
expects that the existence of extended trajectories will be related to percolation. In 
fact the problem can be mapped onto bond percolation, as we will show. The argument 
is lengthy and we only give the main steps and their intuitive content. 

In figure 3 we show a typical trajectory. It is clear that the trajectory can be 
generated by the barriers shown in the figure, which we will define and construct below. 
Locally, it is possible to define the barriers because any given trajectory may only enter 
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Figure 3. Interior and exterior barriers of a typical trajectory for a sample with only i r / 2  
sites. 

a given site via opposite edges and not neighbouring ones. The barrier may be drawn 
diagonally across the site, as shown in figure 3. The constraint of entering via opposite 
edges is a consequence of the trajectory being unable to run between two sites in both 
directions: this can be proved for random walks (where each step is perpendicular to 
the previous one), of which our trajectories are a subset. This also implies that the 
trajectories do not cross themselves, although they may touch a barrier at the same 
place from both sides-a situation which occurs in figure 3. 

Having defined the barriers locally, they may be connected to form a network by 
using two rules. Starting from a barrier on one site: if a neighbour is of the same type 
of site, then its barrier must be perpendicular to the first one, thus joining it at a vertex 
of the site; if, on the other hand, the neighbouring site is of the opposite type, then 
the barrier should be parallel to the first, leaving a gap through which the trajectory 
runs. Then repeat on the next site visited, etc. Note how these rules have been 
implemented in figure 3. Each finite trajectory, which visits more than four sites, is 
formed by reflection from an inner and outer set of barriers which reside on sites of 
opposite types (there is no ambiguity about ‘inner’ and ‘outer’, as the trajectories do 
not cross themselves). Conversely, any cluster of barriers constructed by these rules 
(not following the trajectory but working away from an initial site in all directions) 
will be surrounded by a trajectory. One should note that on any site there is a second 
barrier separating the other two sections of trajectory. The same rules of determination 
apply to this second set of barriers. The set of all trajectories on a given realisation 
of the model is divided into two groups, which are determined by the two networks 
of barriers. 

If we take one of the two networks of barriers and moreover pick the barriers 
residing on one of the two types of sites, then the clusters of barriers may be thought 
of as bond percolation clusters (the sections of barrier are the bonds). The trajectory 
encloses the perimeter of the cluster and the trajectory length is proportional to the 
perimeter length. The probability of a bond existing is the probability of the type of 
site it is associated with. The trajectories become longer as the difference between the 
probabilities of lefts and rights decreases, some trajectories becoming extended when 
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P (  ~ / 2 )  = P (  - ~ / 2 ) .  We note that the mean-field theory does not predict this transition, 
as it makes no distinction between left and right sites. In fact, a percolation argument 
can also be used on the line P (  T) + P (  ~ / 2 )  = 1 (or - ~ / 2 ) ,  yielding a site percolation 
transition at P (  ~ / 2 )  = P,. A bound can be placed on extended trajectories not existing 
for P ( T / ~ )  3 P, on the line P ( 0 )  + P (  ~ / 2 )  = 1, again using a site argument. 

Finally, we should mention a more fundamental connection of this model to 
percolation, which does not depend on any particular parameter range. There are 
fundamentally two types of percolation-site and bond. In the case of bond percolation 
there is a directed variant (e.g., Kinzel 1983). Our model seems to be an example of 
a site analogue of directed bond percolation, where the direction on the bond is 
analogous to the matrix on each site. In our case all bonds are present, but the 
connections between the bonds (the matrices) are the random variables. In directed 
bond percolation all sites are present, however, the bonds are random variables. Our 
model becomes more similar to general directed bond percolation (where both, either 
or neither bond may be present), when a more general matrix, connecting incoming 
bonds to outgoing bonds, that a pure rotation is allowed-for instance no connection 
at all (site absent)-or a many-to-one relation between incoming and outgoing bonds. 

Lattice versions of the Lorentz gas and Ehrenfest’s wind-tree model are also variants 
of this (e.g. Spohn (1980) and references therein, particularly Gates (1972a, b)), and 
our model may be thought of as a rotational analogue of them. 

An application of our model is in the generation of closed random curves, in 
particular, the excluded volume properties of the line P (  ~ / 2 )  + P (  -.rr/2) = 1 could be 
useful. This might be used in studies of ring polymers, either in solution or in the 
melt (by considering the entire set of trajectories). 

A number of interesting questions are still open. What is the accuracy of the 
mean-field theory? By analogy with the special properties of random walks in two 
dimensions, it is possible that all trajectories (except at P(0)  = 1, P ( T / ~ )  = P(-.rr/2) = 1 
and P (  ~ / 2 )  = P,, P (  T )  = 1 - P,) are localised. If there are extended trajectories, what 
is y in ( R Z ) - S Y ?  There is no obvious Flory argument, as the effect of a trajectory 
on itself is not just ‘repulsion’. To what extent are trajectories correlated with each 
other? One might wonder about ‘screening’. What happens in higher dimensions? 
There are several possible generalisations, simple arguments leading to upper critical 
dimensions of four or two. Is a renormalisation group treatment possible? Is the 
transition first order? We are currently studying real space treatments, which seem 
sensitive to the weight function employed. We are also performing Monte Carlo 
calculations. What is the relation to the continuum problem? It is interesting to note 
that in the continuum problem, percolation occurs in the ‘adiabatic’ limit of the 
correlation length of the magnetic field being large compared to the RMS cyclotron 
radius-then the trajectories follow the contours of constant B, on a larger scale than 
the cyclotron radius (see, for example, AlfvCn and Falthammer 1963). Thus all 
trajectories except the one corresponding to the extended B-contour are localised, 
within the adiabatic approximation. Finally, can this lattice model be formulated in 
a Hamiltonian or Lagrangian manner? One problem is with the definition of a conjugate 
momentum. 

To conclude, we have presented a new simple model of ballistic motion in a random 
environment. It shows a transition between all trajectories being localised to having 
extended ones. We have constructed a mean-field theory of this transition, and related 
the model to various particular percolation models. Finally, it was argued that it is a 
special case of a new class of percolation processes. 
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